Synthesis and Characterization of a Novel Dialdehyde and Cyclic Anhydride

Liqiong Wu, Li Feng, Hong Zhang, Qixuan Liu, Xumin He, Fangzu Yang,* and Haiping Xia*

Department of Chemistry, College of Chemistry and Chemical Engineering, and State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, People’s Republic of China

hxia@xmu.edu.cn; fzyang@xmu.edu.cn

Received January 9, 2008

The acid treatment of a ruthenabenzene yielded an unusual dialdehyde. Interestingly, this dialdehyde has notable antioxidant properties and resists even nitric acid. This stability is confirmed by chemical and electrochemical experiments. In addition, a stable cyclic anhydride is synthesized from the dialdehyde via an environmentally friendly electrochemical method.

Aldehydes are important and versatile compounds, widely used in organic synthesis.1,2 Usually, aldehydes are reactive toward oxygen of the air and sunlight and can be slowly oxidized or undergo polymerization.

We recently reported the preparation of ruthenabenzene [Ru(CHC(PPh3)CHC(PPh3)CH)(PPh3)2Cl2]Cl (1).3 During the investigation of the stability of the ruthenabenzene, we obtained a novel dialdehyde 2 from the reaction of ruthenabenzene 1 with nitric acid. Because of its surprising air-stability, thermal-stability, and anti-oxidative ability, we have further investigated its electrochemical properties. The investigation led us to isolate a stable cyclic anhydride 3 from the dialdehyde via an electrochemical method.

Ruthenabenzene 1 reacted with nitric acid in dichloromethane for 5 h, and then aqueous NaHCO3 was added to neutralize the reaction solution, which led to the formation of compound 2 in 93% yield (Scheme 1). Although compound 2 contains two aldehyde groups and two phosphonium groups, a Wittig dimerization or trimerization was not observed during this reaction process.

The structure of 2 has been confirmed by X-ray diffraction. As shown in Figure 1, the C(1)–O(1) (1.211(3) Å) and C(5)–O(2) (1.208(3) Å) bond distances are consistent with the C–O distance of aldehyde groups.4 For the five sp2-hybridized carbon atoms, the C–C bond lengths are in the range 1.379(3)–1.429(4) Å and there is no significant C–C bond length alternation, as expected for a delocalized structure. The C3 backbone of 2 is distorted, and the dihedral angle between the C1/C2/C3 plane and the C3/C4/C5 plane is 45.7°, mainly because of the steric hindrance between the two aldehyde hydrogens, which is similar to the twist of the biphenyl moiety in compounds with biphenyl units.5 In addition, it can be seen that compound 2 contains an allyl anion structure consisting of the three sp2-hybridized carbon atoms C2, C3, and C4, which is usually encountered as a ligand in organometallic compounds but seldom observed in organic compounds.

FIGURE 1. Molecular structure for the compound cation of 2. The hydrogens of phenyls are omitted for clarity. Selected bond lengths [Å] and angles [deg]: O1–C1 1.211(3), C1–C2 1.429(4), C2–C3 1.383(4), C3–C4 1.379(3), C4–C5 1.425(4), O2–C5 1.208(3), C2–C1 1.761(3), C4–P2 1.750(3), O1–C1–C2 126.5(2), C1–C2–C1 116.8(2), C3–C2–P1 120.43(19), C3–C4–P2 120.3(2), C5–C4–P2 118.30(19), O2–C5–C4 125.8(3), C1–C2–C3 121.8(2), C2–C3–C4 124.7(2), C3–C4–C5 121.3(2).

The solid-state structure of 2 is fully supported by NMR spectroscopy and elemental analysis. The 31P{1H} NMR


10.1021/jo800052a CCC: $40.75 © 2008 American Chemical Society Published on Web 03/13/2008
spectrum in CD$_2$Cl$_2$ showed only one CPPh$_3$ signal at 23.38 ppm. The $^1$H NMR spectrum in CD$_2$Cl$_2$ showed the characteristic CHO signal at 9.70 ppm and the C(PPh$_3$)CH at 6.71 ppm. The $^{13}$C($^1$H) NMR spectrum in CD$_2$Cl$_2$ showed the signals for CHO, CPPh$_3$, and C(PPh$_3$)CH at 185.3, 96.3, and 159.2 ppm, respectively. Compared to the value of the CH$_2$ signal in ethylene (123.3 ppm) and the CH signal in benzene (128.5 ppm), the significantly upfield shift of CPPh$_3$ signal (96.3 ppm) indicates that the resonance structures 2A and 2B (Scheme 2) are the important contributors, whereas the $^{13}$C($^1$H) NMR chemical shift for C(PPh$_3$)CH signal (159.2 ppm) is obviously downfield, implying 2C and 2D (Scheme 2) are also the contributive resonance structures, which may mainly be attributed to the strong electron-withdrawing effect of the two phosphonium groups and the protecting effect of the two bulky PPh$_3$ substituents. Furthermore, the resonance structures 2A–2D (Scheme 2) may also contribute to the stability of 2.$^6$

To further confirm the anti-oxidative character of compound 2, its electrochemical behavior has been studied. Figure 2 shows the cyclic voltammetry (CV) of compound 2 recorded in CH$_2$Cl$_2$+Bu$_4$NClO$_4$ (0.1 M) using a glassy carbon disk working electrode in an undivided cell. In the positive scanning direction, the CV of 2 (Figure 2a) shows that there is no oxidation current in the potential window under +1.10 V, compared to the CV of the blank solution only containing CH$_2$Cl$_2$ and Bu$_4$NClO$_4$ (0.1 M) (Figure 2b). A quasi-reversible reduction process is observed, $E_{pc}$ = −1.71 V and $E_{pa}$ = −1.50 V (vs Ag/AgCl), $\Delta E_p$ = 210 mV, when the scan rate is at 100 mV s$^{-1}$. The process exhibits a linear dependence of the cathodic peak current on the square root of the scan rate ($\nu^{1/2}$) from 20 to 200 mV s$^{-1}$, as expected for a diffusion controlled process (see Supporting Information). The CV results of the negative scan demonstrate that the electrochemical reduction process is followed by chemical reaction of the reduced intermediate, which implies an electrochemical (EC) mechanism.$^7$

In addition, controlled potential electrolysis was performed at 1.00 and 1.50 V (vs Ag/AgCl) in CH$_2$Cl$_2$ solution containing 0.1 M Bu$_4$NClO$_4$ in a divided electrochemical cell. When the current was close to zero, the electrolyte solution was evaporated to dryness under vacuum, and $^{31}$P($^1$H) and $^1$H NMR data of the residue displayed that chemical shifts of the dialdehyde remained unchanged. The results of CV and electrolysis indicate that compound 2 has excellent electrochemically anti-oxidative ability. To further test the electrochemically anti-oxidative ability of 2, controlled potential electrolysis was carried out at high electrolytic potential of 2.0 V (vs Ag/AgCl) in a divided electrochemical cell. The electrolysis was stopped when the current was negligible. NMR characterization of the electrolyte showed that complete transformation of 2 was achieved. Moreover, we obtained compound 3 in 53% yield by its isolation from the electrolyte (Scheme 3).

Unambiguous confirmation for the structure of 3 was determined by X-ray diffraction (Figure 3). The compound 3 contains a planar six-membered O-heterocycle with two PPh$_3$ substituents as reflected by the small deviations (0.0405 Å) from the rms planes of the best fit through the six atoms C1, C2, C3, C4, C5, and O2. The lack of significant alternation in the C=O bond distances within the heterocycle suggests that 3 has a delocalized structure.

Consistent with the solid-state structure, the $^{31}$P($^1$H) NMR spectrum in CDCl$_3$ showed only one singlet at 21.01 ppm for CPPh$_3$. The $^1$H NMR spectrum in CD$_2$Cl$_2$ showed the signals for CPPh$_3$:CHO, CPPh$_3$, and CPPh$_3$:CH at 163.0, 80.8, and 160.5 ppm, respectively. The IR spectrum showed the cyclic voltammograms on a glassy carbon electrode at 100 mV s$^{-1}$ of 6 mM compound 2 (a) and blank solution (b) (vs Ag/AgCl) in CH$_2$Cl$_2$ solution containing Bu$_4$NClO$_4$ (0.1 M).

![Scheme 2. Resonance Structures for the Cation of 2](image)

![Figure 2.](image)

![Scheme 3. Electrosynthesis of 3 from 2](image)

---


Experimental Section

Additional experimental details can be found in the Supporting Information.

[OHCC(PPh3)CHC(PPh3)CHO][NO3](2). Concentrated nitric acid (65%, 0.6 mL, 8.8 mmol) was added to a solution of ruthenabenzenes (1.35 g, 1.0 mmol) in CH2Cl2 (25 mL). The reaction mixture was stirred for about 5 h to give a brown solution, and then aqueous NaHCO3 (0.5 M, 20 mL) was added to neutralize the solution. The resulting mixture was filtered to remove the solid suspension. The organic layer was separated and dried by MgSO4. The volume of the organic layer was reduced to approximately 3 mL under vacuum. The residue was poured into ether (60 mL), and the precipitate was collected by filtration, washed with ether (5 x 10 mL), and dried in vacuo to give 2 as a light-yellow solid (0.63 g, 93%). IR (thin film, cm⁻¹): 3058, 2914, 2844, 2809, 2739, 1634, 1609, 1505, 1439, 1346, 1130, 719, 688. 1H NMR (300.1 MHz, CDCl3): δH 6.71 (t, J = 16.1 Hz, 1H), 9.70 (d, J = 21.6 Hz, 2H), 7.66–7.36 (m, 30H), 31P[1H] NMR (121.5 MHz, CDCl3): δP 23.38 (s). 13C{1H} NMR (75.5 MHz, CDCl3): δC 185.3 (d, J = 5.4 Hz, 159.2 (t, J = 14.0 Hz), 96.3 (dd, J = 96.7 Hz, J = 15.1 Hz), 134.4–119.0 (m). Anal. Calcd for compound 2: C 72.74, H 4.88, N 2.05. Found: C 71.76, H 4.77, N 2.00.

1.432(3), C2–C3 1.214(3), C–O symmetric and asymmetric stretching modes were assigned.

Table: Selected bond lengths [Å] and angles [deg]: O1–C1 1.210(3), O2–C1 1.397(3), C1–C2 1.432(3), C2–C3 1.386(3), C3–C4 1.372(3), C4–C5 1.432(3), O2–C5 1.397(3), O3–C5 1.214(3), C2–P1 1.767(2), C4–P2 1.762(2); O1–C1–C2 128.1(2), O1–C1–O2 115.2(2), C1–C2–P1 118.9(18), C3–C2–P1 121.7(18), C3–C4–P2 123.9(19), C5–C4–P2 116.6(19), O3–C5–C4 126.6(2), O3–C5–O2 116.5(2), C1–C2–C3 119.3(2), C2–C3–C4 122.7(2), C3–C4–C5 119.2(2), C5–O2–C1 124.0(2).

The X-ray crystal structure determination of 2 and 3. Crystals of 2 and 3 suitable for X-ray diffraction were grown from CH2Cl2 solutions layered with diethyl ether. A light-yellow blocked crystal of 2 was mounted on top of glass fibers and transferred into a cold stream of nitrogen. Intensity data were collected on a Bruker Smart CCD Area Detector (2) and an Oxford Gemini Ultra CCD Area Detector (3) respectively, using graphite-monochromated Mo Kα radiation (λ = 0.71073 Å) at 223 K. The structures were solved by direct methods, expanded by difference Fourier syntheses, and refined by full-matrix least-squares methods on F² by using the Bruker SHELXTL-97 program package. 

FIGURE 3. Molecular structure for the compound cation of 3. The hydrogens of phenyls are omitted for clarity. Selected bond lengths [Å] and angles [deg]: O1–C1 1.210(3), O2–C1 1.397(3), C1–C2 1.432(3), C2–C3 1.386(3), C3–C4 1.372(3), C4–C5 1.432(3), O2–C5 1.397(3), O3–C5 1.214(3), C2–P1 1.767(2), C4–P2 1.762(2); O1–C1–C2 128.1(2), O1–C1–O2 115.2(2), C1–C2–P1 118.9(18), C3–C2–P1 121.7(18), C3–C4–P2 123.9(19), C5–C4–P2 116.6(19), O3–C5–C4 126.6(2), O3–C5–O2 116.5(2), C1–C2–C3 119.3(2), C2–C3–C4 122.7(2), C3–C4–C5 119.2(2), C5–O2–C1 124.0(2).

The electron and protecting effect of two phosphonium groups may play an important role in the high stabilities of compound 3.

In summary, we have synthesized and structurally characterized a novel dialdehyde that has remarkable thermal stability and oxidation resistance properties. This dialdehyde represents a rare example of an anti-oxidative aldehyde that is stable even in the presence of nitric acid. In addition, the electrochemical properties of the dialdehyde have been studied by cyclic voltammetry, and a stable cyclic anhydride was obtained from the dialdehyde via an electrochemical method, which has attracted considerable attention as a green chemistry process.8